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RADIATION PATTERNS OF FOUR SYMMETRICALLY

LOCATED SOURCES ON A PERFECTLY
CONDUCTING SPHERE

2397

In this report the radiation patterns of four symmetrically
located sources (dipoles or small apertures) on a perfectly conducting
sphere are presented, Analytical solutions are given which were pro-
grammed for the digital computer, The purpose of this investigation
is to get some idea of the radiation field of a symmetrical antenna sys-
tem mounted on a satellite which may be considered as a sphere. The
data contained in this report may serve as a guide in selecting certain
desirable patterns which can be obtained by varying such factors as the
size of the sphere and the number of the sources, their positions on
the sphere, and their relative magnitudes and phases., a

The Dyadic Green's Function Pertaining to Exterior
Problems of a Perfectly Conducting Sphere

For harmonically oscillating field with a time dependence of
e "lwt the electric field vector E satisfies the differential equation

(1) v X VXE-szZiwp.i

where k = 2n/\ and \ is the free space wavelength, Equation (1) can
be integrated in a very compact manner by introducing a dyadic Green's
function! which is a solution of the equation

Cd 2 _
(2) VX VX Gg -k G =

where‘f denotes the unit dyadic and 6(R[R') tlie thrg_?-dimensional delta
function. Application of Green's theorem to E and G¢ in a closed region
yields the following equation:




(3) E =iop SSg‘(F' .G av* + gg

EE' X fi) « V'X Gg +(VXEY (f X Go)lds'.
S

In dealing with radiating current elements in the presence of a diffracting
body, the surface of integration S occurring in the above equation can be
chosen to be a composite surface consisting of the surface of the body Sy
and a large sphere S at infinity., Because of the Sommerfeld radiation
condition the surface integral over S, vanishes and the second term in
the surface integral can be eliminated if we require that Ee satisfies

the following boundary condition on Sq:

[y
Knowing Ge one can find the field due to a given current distribution,
or the field due to apertures on a perfectly conducting body, by evaluating
the integrals

(5) E =iop ggg(f' . Gg)dv!
or
(6) E = gg(ifxﬁ)-v'xae]ds'.

aperture

The dyadic Green's function for a sphere, as derived in Reference 2,
for the configuration shown in Fig. 1 is

. [,
g -k N 2n+1  (n-m)! r'(‘) /() JK’I(”
(7) Ge 4 ‘1 §0(2-60) n(n+l) ¢ (n+rr1)! '\ Mce)mn +O1’11\/161'1’11‘1 Smn
n= m=

where (R, 6, ¢) = spherical coordinates of point of observation,
(R, 8" ¢') = spherical coordinates of the source point,
a = radius of the sphere with center at origin,




(R, 8,9)
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X
Fig, 1.
Lp(l) = j_ (KR)P™(cos 9) €O8 ¢
Smn Jn n sin
Yern - (1)
omn (s) _ m ACEE
Ve =h, (KR) Py (cosO) g 4
o
Mg  =vX (4, R),
omn omn
and
— N 1 % —
e = = VX VX (e R)
omn omn

Primed functions are defined with respect to (R?, 0F ¢"):

)
(x)]

(1
Qn =-jn(x) /hn coka

and

K ) 0 (1)
Bo = ~Bx [x_]n(x)]/ % [th (x)]lxzka




Far-zone Field of a Radially Oriented Dipole on the Surface
of a Perfectly Conducting Sphere

The currint distribution function for an electric dipole with
moment p = pr R can be written as

(8) 3"! = _pr R 6(R = 9) 6(9' o) 6(¢.‘¢o)
R'? sin 6' )

Substituting Eq. (8) into Eq. (5) one obtains

® n
- 2nt]l (n-m)] A §(R'-a)§(08%680) 5(d-dg)
(9 E =wtup ( ) PSS (113
' nzl m=0 n(n+D) {ntm)1 ) R'? sin 6!

. {m-m o TR (R SR

® n
k 1=m)! pm cos
m=

=1 0

o)

1
: (1)
[Ph I’ p=ka

NS .

503)

By making use of the asymptotic formula for N' ', when the value of kR
is much larger than unity, we have the expression for the far field:

© n
k - ! cos
(10) E = - ppr(‘}v) E } (2'60)(7‘“”)% P (cos 8,) . mb,
n=l m=l
1
(1)ye
Loy 'V
ikR A - 0 Al
. d m P, (cos9) gin i
(-1) kR {a_e' Pn (cos % m¢ O sin © cosm(bq){




In the special case when the dipole is placed at the top of the sphere
with the coordinate (a, 0, 0) Eq, (10) reduces to

1 .
(1) E = =¥ Pr( )E (2n+1) (1)] 1) P {cos 9)6

n=l =pPa

p.k¥ eikR A
:4:€p2 Y z\ (2n+1)(-1)2 ———(l_ﬁ-'_— Pll,l(cos 6) 0,
a

n=] P=pg
where p; = ka.

Far-zone Field of a Small Aperture on the Surface
of a Perfectly Conducting Sphere

Insertion of the expression for Gg, defined by Eq. (7), into Eq. (6)
results in the integral

\ 2ntl  (n-m)! O IID A
(12) E(R) S ?(2 50) 5t} (mhm )'(E'Xn) {[N a, N M

N SVERIRVICD ﬁ(’)}ds- :

In evaluating the far field use can be made of the asymptotic formulae
for M{® and N3 , which are

(3 ikR [_ A m A
13 M( ) - (_i)n+l e : .m M cos 9)51n mé 0 - aPy cos
(13) Pn i
€mn kR sin 6 cos 58  sin
_ (_i)n+1 eikR m
kR °mn
e}
and
19y N R {0PF cos 067 M PM(cos 0)T mo ‘J
(14) €mn (=17 TR [ 96  sin sin® o os J
L olkR
- (-1) kR ngmn )
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where R X m =n. For an infinitesimal aperture with field direction
shown in Fig. 2 the aperture field is described by

.. 5(6'-05) 8(¢=0o)
E(RY = AEO@O azosin 0 .

Equation (12) then becomes

kR & &
(15) E(R) = #Eo e ? N\ (-i)P(2-5,) 20t (n-m)!
4na kR /[ [ n(n+l) (n+m)!
n=l m=0
'm m
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where

o

ikR *
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In the special case when the aperture is on the top of the sphere with
coordinate (a, 0, 0), Eq. (15) reduces to

ikR o
(16) E(ﬁ) = _ZT_r_a eR Z (..i)n f(%‘%)_{[cosgo sin¢ - sinp, cos Y
n=l '

[-i P;l(cos 0) dP;l(cos 8y 1| A
i et + — | 6

£, sin® de €n

-i dP] e ! 8)] A
+[cos Bocos¢ +sinpg sincb][—-—l— _nT(ec_o_s__) + —gl-,— Pn_(‘ffST)J ¢} .

€n n sin

Transformation of Coordinates

In programming Eqgs. (10) and (15) for a digital computer, dif-
ficulties will be encountered in determining the number of terms needed
in the series since double summation over index m and n is required.
In contrast, only a single summation is necessary for Eqgs. (11) and (16)
and it is much easier to handle.

The troublesome problem for programming Eqgs. (10) and (15) for
calculating the far-field pattern of an arbitrarily located dipole or
aperture can be avoided by a method which is described in the following
paragraphs,

For an arbitrarily located dipole (or aperture) with coordinate
(a, 65,9,) on the sphere, the coordinate system is first rotated around
the z-axis through the angle ¢,, and then followed by tilting the rotated
coordinate system an angle of 85 so that the coordinate of the dipole
(or aperture) in the new coordinate system will be (a, 0,0). It is in this
new coordinate systemn that the simplified formulae shown in Eq. (11)
(or Eq. (16)) can be used. For each direction specified by 8 and ¢ in
the original coordinate system the corresponding coordinates 6' and ¢!
in the new coordinate system will be

(17) 6' = cos™! [cos 65 cos 6 + sin 64 sin © cos(¢-¢o)]

cos 8, sin B cos($-¢,)-sin O, cos O

sin 0 sin(¢~¢ ) .

(18) ¢! = cot™!




The transformation of the unit vectors can be obtained by taking the
gradients of cos ' and cot ¢' in the two coordinate systems

eg! eqnt
(19) V cos 9'=:R9_ Eaﬁl[cos o] = - i—e sin 6! ,
(20) 7V cos 8' = V[cos 85 cos 6+ sin 0o sin O cos(¢-¢o)]
e

= [~cos 6, sin 6+ sin 6, sin 0 cos($-dy) ]

e
+ - [ ~sin 0, sin © sin(¢-¢o)],

R sin 6
e, o
9 Z
2 Vot ¢ = —R_——:;;—G-' [%'(cot MJ TR :i'n 5 esct ol
and
(22) v cot ¢! = v [cos 8o sin O cos(d-¢,)~sin O, cos 9]
sin © sin(¢-¢o)

in © R
=V [cos 8, cot($=-dg) - 5_11_.0_,‘:_‘”_}

sin(¢-9)
- 20 [_____sin %o csc? 9] + _e¢
"R sin($~¢ ) R sin 6

{cscz(tb-tbo)[sin 0o cot B cos(dp=p,)=~cos 90]} .

Equating the gradients of the same functions in the two coordinate systems
given by Eqgs. (19), (20), (21), and (22) the following relations are obtained
for the unit vectors:

(23) egisin 8= Se[cos 8o sin 6 - sin 6, cos 9cos(¢-¢o)]

+ E¢ sin 0, sin(¢-04)

and




(24) Eq), { sin 04 }_ E‘p [sineocotecos(d)-cbo)-cos60
. L

AT T~ : : 7
in 6'sin® ¢! sin? @ sin($~-¢,)| sin O sin? (¢-¢o)

The far field of an arbitrarily located dipole (or aperture) is then
evaluated first in the rotated coordinate system by Eq. (11) (or Eq. (16))
with the appropriate angular coordinates given by Eqs. (17) and (18).
The field components thus acquired are converted back to the original
coordinate system through the use of Eqs. (23) and (24). If several
sources (dipoles or apertures) are assumed, the procedures described
above must be repeated and the sum of those field components gives the
resultant field,

Numerical Computation

Equations (11), (16), (18), (23), and (24) are programmed for the
computer IBM 7094. A subroutine has been used for generating spherical
Bessel and Neumann functions for real arguments and positive integral
orders described by Corbato and Uretsky.® Twenty-five terms are
summed in those series. To assume convergence and to confine the
errors within one per cent in the summation of the series, the diameter
of the sphere is limited to a value of less than four wavelengths. The
results are normalized for each group with the same configuration of
sources and the same diameter of the sphere. Patterns are shown in
Figs. 3-10 for the dipole source case and Figs. 11-16 for the aperture
source case. The four sources on the sphere are symmetrically located
with coordinate €= 0°, ¢ =0°; 6=109.5°, ¢ =0°; 6=109.5°, ¢ = 120°;
and 6 = 109.5°, ¢ = 240°, respectively.

In summing those series the summation was stopped when the ratio
of the absolute value of the sum of the last four terms and the absolute
value of the total sum is less than 1073, This criterion limits the
argument in the spherical Bessel and Neumann functions to less than 12
(corresponding to a diameter of the sphere less than 4\) in order to
terminate the summation within 25 terms. The subroutine for the spherical
Bessel and Neumann functions can still be used for orders higher than 25 and
larger arguments, but the routine used for the Legendre will give more
cumulated errors for higher order terms. In addition, there are errors
caused by transformation of coordinates and unit vectors which are not
easy to estimate. Fewer errors are involved when the sources are dipoles
because only Eqs. (17) and (23) were used (use must be made of Egs. (18)
and (24) also for aperture excitation) since there is no ¢ field component.

10




The corresponding diameter of the sphere, the angle ¢, and the
field direction angle f on the aperture (for the aperture source case
only) are indicated in each pattern. The right half of the pattern
assumes the smaller value of the two¢' s indicated. The angle g is
the same for all four apertures on the sphere, i.e., it is either 0° or
90°.

The results are normalized for each group (all patterns in the
same figure) with respect to the largest data value obtained in that group.
The largest data value may not necessarily be the actual maximum value
since the position of the maximum of the radiation pattern may not be in
the planes which have been chosen.

In the dipole source case the fields are evaluated between angles
¢ = 0° and ¢ = 60° with the incremental angle A¢ = 10*, Because of the
symmetrical situation the field from ¢ = 0°®* to ¢ = 60° covers all its
variations. In the aperture source case, with p = 0°, patterns in the
plane ¢ = 0° and 180°, ¢ = 45° and 225*, ¢ = 90° and 270°, and ¢ = 135°
and 315° are presented. For the case in which g = 90°, patterns in the
plane ¢ = 0° and 180°, ¢ = 45° and 225°, and ¢ = 90° and 270° are
presented. By symmetry, the patterns in the plane ¢ = 135° and 315°
are the same as those in the plane ¢ = 45° and 225°, except that the
right half and the left half of the pattern are interchanged.

In several planes which have been chosen to show patterns, there
are either no Egor no E¢ components. For example, Fig. 3 shows no
E¢ component in the plane ¢ = 0° and 180°, and in Fig. 11 there is no Eg
component in the plane ¢ = 0° and 180°, etc.

11




8=0° A
d=%

$ =I0°190°
Eq

(b)

(d)

Fig, 3. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to \/2.
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Fig, 3,

Radiation patterns of four dipoles, symmetrically

located and radially oriented on the surface of a

sphere of diameter equal to \/2.
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d=»
¢ =0°180°
E,

d=»
¢ =30°%210°
€,

8-0° d=» §-0°
¢ =207200°
E,

(c) (d)

Fig. 4. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to \.
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d=»
¢ =20%200°
0° E .

d =X
¢ =03 90° 9
g-=0° E,

NN

(f)

d=»
$ =30°2I0°

Fig. 4. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to \.

15




-3
d = %x d - ?x
$ =0°,180° ¢ =I0190°
9=O° 9=O° E
E, 6

d:%)\ d:-g—x
¢ =20°,200° ¢
Eq

(d)

Fig. 5. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 3\/2,
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6-0° E,

o Q
n

'®) r\)lu
»

309210°

(g)

Fig. 5, Radiation patterns of four dipoles, symmetrically

located and radially oriented on the surface of a
sphere of diameter equal to 3\ /2.
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d =2x

.00 =2\ §-0°
§:0 d $ =10°190°
¢ =0°180° c
[’}
Ee
(a) (b)
d =2 d=2x
8-0° =20° o
¢ =207200 5-0° $ =30°2I0°

Fig. 6. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a

sphere of diameter equal to 2\,
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d =2

d =2x ¢ =20°200°
- $ =10°190° E,
E,

(f)

d =2
o ¢ =30°210°
E¢

6

Fig., 6. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 2\,
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$ =09180°
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¢ =105190°
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s O
"

rojwn

>

5200° g-0°

5
d=3X

$ =303210°
Eq

|

|

|
(d)

Fig, 7. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 5\/2,
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d-= '5" d-= —g—k
o $ =10%190° §-0° 5 =208 200°
Ee E,

(f)

d=$»
¢ =305210°
E¢

(g)

Fig, 7. Radiation patterns of four dipocles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 5\ /2.
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o d 230)\ d =3

4’ -O, |80 6=0 4, ='O?|900
EB

E,

d =3
§-0° ¢ =30°210°

(d)

Fig. 8. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 3\,
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d =3x d =3x
6-0° $ =I0°190° i $ =207200°
E¢ E¢

(f)

d =3
¢ =3072I0°
Es

(g)

Fig. 8. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 3\,
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Fig. 9. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 7\ /2.
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Fig. 9. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 7T\ /2.
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d =4x

g=0° ¢ =0°180°
Eq
(a)
d =4x
9-0° ¢ =20°200°
EO

Fig,

10,

(c)

d=24)
¢ =I0%190°
g=0° E,
(b)
d =4)
g-0° ¢ =30°,2|O°
E,

(d)

Radiation patterns of four dipoles, symmetrically

located and radially oriented on the surface of a

sphere of diameter equal to 4\ .
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d =4 . d =4\
g-0° $ =I0°190° §:0° ¢ =207200°
Eqg Eg

()

d =4x
¢ =30°2I0°
g-0° E¢

(g)

Fig. 10. Radiation patterns of four dipoles, symmetrically
located and radially oriented on the surface of a
sphere of diameter equal to 4X\.
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0.785 (d=0.251) g.:fego(d =0.25))
) O° ] (-]
ﬁ ¢ =45°,225° f=0° ¢ =90 ' 270

0/

(a)

J

(b)

0.785 (d=0.251)
= Q°
¢ =0°180°
0.785 (d=0.251) g-0° Eg
B= 0°

N ¢ =135° 315°
50 Ea /w

v O

(d)

Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to

0. 25\, and with the field direct}\on on the aperture the
same as that of the unit vector o,




0.785 (d=0.25))

g= O° 0.785 (d=0.251)
$=45°225 g= 0°
g-0° E¢ $ =905,210°

.
N

N\,

0.785 (d=0.251)
-0 B= 0°

a
—E
NP

(g)
Fig, 11,

Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to

0. 25\, and with the field directjon on the aperture the
saime as that of the unit vector ¢.



0.785 (d=0.251) O.?85°(d =0.251)

B=90° g=90 .
¢=0°180° $=455225
6-0° E, Eo

Fig,

(o) (b)

0.785 (d =0.251))
B=90°
¢ =90° 270°

E,
6-0°

(c)

12. Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
0, 25\, and with the field directign on the aperture
perpendicular to the unit vector ¢.
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0.785 (d=0.251)

B=90°
0.785 (d=0.251) 4 =90° 270°
ﬁ =90° 8-0° E¢

$=45°225°

o C
L C

)

(d) ()

Fig. 12. Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
0. 25\, and with the field directig\n on the aperture
perpendicular to the unit vector ¢,
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1.65 (d=0.5251)

=0. = OO

;6=5 é)d 0.525)) 5o B A

§-0° ¢ =45°225° E,
Ea (w
(a)
(b)
.65 (d =0.5251) .65 (Cj =0.525))
g= 0O° g-0° B= 0

m
©

Fig. 13.

SN\
J

© bd
(d)

Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to

0.525\, and with the field d1rect10n on the aperture the
same as that of the unit vector ¢>
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1.65 (d = oszsx)

= 0° 165 (d=0.525))
$=452225° g= 0°

T Eg $ =90°270°
g\ oo

Fig.

U

1.65 (d=0.5251)
B= 0°
¢ =135° 3|5°

@
3

(g)

13, Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
0. 525%, and with the field d1rect10n on the aperture the
same as that of the unit vector ¢
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B=90° B=90°
¢ =07 180° ¢ =455 225°
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g
g (

(a) (b)

1.65 (d=0.5251)
B=90°
¢ =90°,270°
g-0° E,

Y
A

(c)

I"ig. 14 . Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
0. 525\, and with the field dircct}"kon on the aperture
perpendicular to the unit vector ¢,
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$ = 45°,225° Eg
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g-0"

(d) (e)

Fig. 14. Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
0. 525\, and with the field direction on the aperture
perpendicular to the unit vector a:
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5.76 (d=1831)

576 (d=1831) g=0°
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EO

5.76 (d=1.83))
= 0°
5.76 (d=1831) g $=07180°
8=0° Es
$ =135335°
EO

(d)

Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to

1. 83\, and with the field direct/i\on on the aperture the
same as that of the unit vector ¢.
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Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
1.83\, and with the field direct/\ion on the aperture the
same as that of the unit vector ¢.
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Fig. 16. Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
1. 83\, and with the field dlrectlon on the aperture
perpendicular to the unit vector ¢
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Fig. 16, Radiation patterns of four small apertures, symmetrically
located on the surface of a sphere of diameter equal to
1, 83\, and with the field directic/>\n on the aperture
perpendicular to the unit vector ¢.
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